クーロンの法則【電験3種-理論】

クーロンの法則 理論

電験3種の理論で出題されるクーロンの法則について、初心者の方でも解りやすいように、基礎から解説しています。また、電験3種の試験で、実際に出題された過去問題も解説しています。

電気を帯びた物質の間に働く力

静電気は二つの物質を摩擦することなどによって発生します。静電気などによって物質に電気を帯びることを「帯電」といいます。また、物質が帯びている電気の量を「電荷」といいます。尚、大きさを考えない点状の電荷のことを「点電荷」といいます。

「電荷」はすべての電気的な現象の元となるものです。電荷には正(プラス)と負(マイナス)の2種類があり、単位はクーロン[C]です。1クーロン[C]は1アンペア[A]の電流が1秒間に運ぶ電荷の量です。

帯電(電気を帯びた)した物質間には力が働きます。この力は引力になるときと、反発力になるときがあります。引力は物質が「互いに引っぱりあう力」、反発力は物質が「互いに離れようとする力」です。

この帯電した物質間に働く力が、引力になるのか、反発力になるのかを決める元になるのが、電荷が持っている電気の符号です。電荷の符号が同符号の場合は反発力、異符号の場合は引力が働きます。このように電荷の間にはたらく力のことを「静電気力」といいます。

静電気力の大きさは2つの電荷の持つ電気量が大きいほど、また電荷間が近いほど大きくなります。

斥力

二つの電荷の符号が同じとき、静電気力は反発力となります。

引力

二つの電荷の符号が異なるとき、静電気力は引力となります。

  • 物質が電気を帯びることを「帯電」といい、帯びている電気の量を「電荷」といいます。
  • 電荷が持つ電気の量の単位はクーロン[C]です。
  • 静電気力は同種の電荷の場合は反発力、異種の電荷の場合は引力が働きます。
  • 2つの電荷の持つ電気量が大きいほど、静電気力は大きくなります。
  • 2つの電荷の距離が近いほど、静電気力は大きくなります。

クーロンの法則

帯電した二つの物質間に働く力の大きさは、それぞれが持つ電荷の積に比例し、距離の2乗に反比例します。これをクーロンの法則といいます。

クーロンの法則二つの電荷の量をそれぞれ $ Q_{ 1 },Q_{ 2 }$[C]、電荷間の距離を $ r$[m]とすると、二つ電荷間に働く力の大きさ $ F$[N]は、

$ F=\displaystyle \frac{ 1 }{ 4πε_{ 0 } }\frac{ Q_{ 1 }Q_{ 2 } }{ r^2}$[N]

$ ε_{ 0 }$ (イプシロンゼロ)は真空の誘電率と呼ばれる定数です。誘電率とは、電荷の貯め易さを表わす物理定数です。誘電率が高い物質ほど、電荷を貯め易いといえます。

真空の誘電率は$ ε_{ 0 }=8.85×10^{ -12}$[F/m](読み:ファラド/メートル)です。空気中でもほぼ同じ値です。計算式で使う場合は、

$ ε_{ 0 } =\displaystyle \frac{ 1 }{ 4π×9.0×10^9}$ [F/m]

を使うと便利です。

二つ以上の電荷の間の静電気力

図のように電荷 $ q$[C]が二つの電荷 $ Q_{ 1 }$[C]、$ Q_{ 2 }$[C]から受ける静電気力 $ F$[N]の大きさを考えます。ただし、$ q,Q_{ 1 },Q_{ 2 }$はいずれも正電荷とします。

静電気力は、力学で学ぶ力と同様にベクトルで考えます。したがって、ベクトルの和が合力となります。$ q$ が $ Q_{ 1 }$ から受ける静電気力を $ F_{ 1 }$[N]、$ q$ が $ Q_{ 2 }$ から受ける静電気力を $ F_{ 2 }$[N]とすると、静電気力の合力 $ F$[N]は、ベクトルの合成より平行四辺形の対角線となります。

合成

電験3種-理論(静電気)過去問題

2002年(平成14年)問2

図のように、真空中の 3[m]離れた2点 A , B にそれぞれ $ 3×10^{ -7}$ [C]の正の点電荷がある。A点とB点とを結ぶ直線上のA点から 1[m]離れたP点に Q[C]の正の点電荷を置いたとき、その点電荷にB点の方向に $ 9×10^{-3}$ [N]の力が働いた。この点電荷 Q[C]の値として、最も近いのは次のうちどれか。ただし、真空中の誘電率を $ ε_{ 0 } =\displaystyle \frac{ 1 }{ 4π×9.0×10^9}$[F/m]とする。

2002年問2

(1)$1.2×10^{-9}$ (2)$1.8×10^{-8}$ (3)$2.7×10^{-7}$ (4)$4.4×10^{-6}$ (5)$7.3×10^{-5}$

2002年(平成14年)問2 過去問解説

AP間に働く力を $ F_{ AP }$[N]とすると、クーロンの法則より

$ \begin{eqnarray}F_{ AP }&=&\displaystyle \frac{ 1 }{ 4πε_{ 0 } }\frac{ Q_{ A }Q_{ P } }{ r_{AP}^2}\\\\&=&9.0×10^9×\displaystyle \frac{ 3×10^{-7}×Q}{ 1^2}\\\\&=&27.0Q×10^2[N]\end{eqnarray}$

BP間に働く力を $ F_{ BP }$[N]とすると、クーロンの法則より

$ \begin{eqnarray}F_{ BP }&=&\displaystyle \frac{ 1 }{ 4πε_{ 0 } }\frac{ Q_{ B }Q_{ P } }{ r_{BP}^2}\\\\&=&9.0×10^9×\displaystyle \frac{ 3×10^{-7}×Q}{ 2^2}\\\\&=&6.75Q×10^2[N]\end{eqnarray}$

P点に働く力は $F$[N]は、$ F=F_{ AP }-F_{ BP }=9×10^{-3}$[N]なので

$ \begin{eqnarray}F&=&F_{ AP }-F_{ BP }\\\\&=&27.0Q×10^2-6.75Q×10^2\\\\&=&20.25Q×10^2=9×10^{-3}[N]\end{eqnarray}$

$ Q=4.44×10^{-6}$[C]

答え(4)

2003年(平成15年)問15

真空中において、それぞれ質量 $m$[kg]、電荷 $+Q$[C]の小さな球の帯電体A及びBがある。これらの帯電体をそれぞれ長さ $r$[m]の糸で点Pからつるしたところ、図のように、帯電体A、Bの間隔が $a$[m]となって静止した。次の(a)及び(b)に答よ。
ただし、真空の誘電率 $ε_0$[F/m」、重力加速度 $g$[m/s2]とする。また、帯電体A及びBの直径は $r$[m]に比べて十分小さく、糸の質量は無視できるものとする。

 2003年問15

(a)帯電体A、B間に働く力 $F$[N]の大きさとして、正しいものは次のうちどれか。

(b)帯電体A、B間の静止状態において、糸の鉛直直線に対する傾きが θ[°]であったときに成立する式として、正しいのは次のうちどれか。

2003年(平成15年)問15 過去問解説

(a)AB間に働く力を $F$[N]は、クーロンの法則より、

$ F=\displaystyle \frac{ 1 }{ 4πε_{ 0 } }\frac{ Q_{ A }Q_{ B } }{ r_{AB}^2}=\displaystyle \frac{ Q^2 }{ 4πε_{ 0 } a^2}$

(b)静止状態に働く力を図示します。

2013年問15解

力の関係は、

$ T=\displaystyle \frac{ mg }{ cosθ }=\displaystyle\frac{ F}{sinθ}$

(a)の解を代入すると、

$\displaystyle \frac{ mg }{ cosθ }=\displaystyle\frac{ \displaystyle \frac{ Q^2 }{ 4πε_{ 0 } a^2}}{sinθ}$  

$Q^2=\displaystyle \frac{ 4πε_{ 0 } a^2mg sinθ}{ cosθ }$

三角関数より、$sinθ=\displaystyle \frac{\displaystyle \frac{a}{ 2 } }{ r }$ なので、

$\begin{eqnarray}Q^2&=&\displaystyle \frac{ 4πε_{ 0 } (2rsinθ)^2mg sinθ}{ cosθ }\\\\&=&16πε_{ 0 } mgr^2 sin^2θtanθ\end{eqnarray}$   

答え(a)-(5)、(b)-(1)

2005年(平成17年)問1

真空中において、図に示すように一辺の長さが 30[cm]の正三角形の各頂点に $ 2×10^ {–8}$[C]の正の点電荷がある。この場合、各点電荷に働く力の大きさ $F$[N]の値として、最も近いのは次のうちどれか。ただし、真空中の誘電率を $ ε_{ 0 } =\displaystyle \frac{ 1 }{ 4π×9.0×10^9}$[F/m]とする。

2005年問1

2005年(平成17年)問1 過去問解説


点電荷A,B,Cに働く力は同じですので、点電荷Aに働く力について考えます。点電荷AC間に働く力を $ F_{ CA } $[N]、点電荷AB間に働く力$ F_{ BA } $[N]とすると、$ F_{ CA } =F_{ BA }$[N]が成り立ちます。

ここで $ F_{ CA }  と  F_{ BA }$[N]がつくる合成力 $F$[N]は

$ F=F_{ CA } ×cos30°×2$[N]

クーロンの法則より

$ \begin{eqnarray}F_{ CA } &=&\displaystyle \frac{ 1 }{ 4πε_{ 0 } }\frac{ Q_{ C }Q_{ A } }{ r_{ CA }^2}\\&=& 9.0×10^9×\displaystyle\frac{ (2×10^{ -8})^2 }{ (0.3)^2}\\&=&4×10^{ -5}\end{eqnarray}$

したがって、

$ \begin{eqnarray}F&=&4×10^{ -5} ×cos30°×2\\&=&4×10^{ -5} ×\frac{ \sqrt{ 3 } }{ 2 }×2\\&=&6.92×10^{ -5} [N]\end{eqnarray}$

答え(1)

2013年(平成25年)問2

図のように真空中の直線上に間隔 $r$[m]を隔てて、点 A,B,Cがあり、各点に電気量 $ Q_A=4×10^{ -6}$[C],$Q_B$[C],$Q_C$[C]の点電荷を置いた。これら三つの点電荷に働く力がそれぞれ零になった。このとき、$Q_B$[C]及び $Q_C$[C]の値の組み合わせとして、正しいものを次の(1)~(5)のうちから一つ選べ。ただし、真空中の誘電率を $ ε_{ 0 } =\displaystyle \frac{ 1 }{ 4π×9.0×10^9}$[F/m]とする。


2013年(平成25年)問2 過去問解説

 A,B,Cの各点に働く力を $ F_{ AB }$[N],$ F_{ AC }$[N],$ F_{ BC }$[N]、$ \displaystyle \frac{ 1 }{ 4πε_{ 0 } }=k$ とすると、クーロンの法則より、

$ F_{ AB }=k\displaystyle \frac{Q_{ A }Q_{ B } }{ r^2}$[N]

$ F_{ AC }=k\displaystyle \frac{Q_{ A }Q_{ C } }{ (2r)^2}$[N]

$ F_{ BC }=k\displaystyle \frac{Q_{ B }Q_{ C } }{ r^2}$[N]

題意より、$ F_{ AB }= F_{ AC }$[N]なので、

$ k\displaystyle \frac{Q_{ A }Q_{ B } }{ r^2}=k\displaystyle \frac{Q_{ A }Q_{ C } }{ (2r)^2}$

$ Q_{ A }Q_{ B } = \displaystyle\frac{1}{ 4 }Q_{ A }Q_{ C } $

$ Q_{ B } = \displaystyle\frac{1}{ 4 }Q_{ C } $

題意より、$ F_{ AB }= F_{ BC }$[N]なので

$ k\displaystyle \frac{Q_{ A }Q_{ B } }{ r^2}=k\displaystyle \frac{Q_{ B }Q_{ C } }{ r^2}$

$ Q_{ A }Q_{ B } = Q_{ B }Q_{ C } $

$ Q_{ A } = Q_{ C } $

力の向きを考えてみると、$ Q_{ A }$は+の電荷なので、図から判断すると、$ Q_{ C }$は+の電荷、$ Q_{ B }$は-の電荷になります。


よって、

$ Q_{ B } = -1×10^ { -6 }$
$ Q_{ C } = 4×10^ { -6 }$

答え(3)

理論電験3種
cubeをフォローする
基礎からわかる電気技術者の知識と資格

コメント